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Abstract  

Recently, Y. Nambu stated the principles of a new analytical mechanics which allows an 
odd, as well as an even, number of phase space variables. In this paper we investigate if 
this mechanics is independent for the odd case of Dirac's classical mechanics because 
there are reasons which allow one to suspect that independence fails. We prove that 
Nambu's mechanics is independent of Dirac's mechanics, at least for the odd cases, so 
that the Nambu mechanics can, in principle, describe physical systems for which the 
Dirac mechanics is not suitable. 

As regards the even case, it is natural to confront the Nambu mechanics with the 
Hamiltonian one, because both have the same dimension for thek phase spaces. In this 
paper we restrict our study to the comparison of the canonical groups of both  formahsms 
and prove that  both groups are different. 

Garc[a Sucre and K~lnay have suggested that perhaps the Nambu mechanics is the 
natural one for quarks. We end our study with a brief discussion on this subject whose 
conclusion seems to support their conjecture. 

1. In troduct ion 

N a m b u  ( I 9 7 3 )  c rea ted  a new ana ly t ica l  m e c h a n i c s  in wh ich  the  n u m b e r  n 

o f  phase  space var iables  Xl,  x2 . . . . .  Xn (usual ly  even because  to each  qi corre- 
sponds  a Pi) can be  any  in teger  grea ter  than  one.  This  increases  the  poss ibi l i ty  
t ha t ,  a f te r  quan t i s a t i on ,  m i c r o s y s t e m s  wh ich  are n o t  so easy to tackle  (e.g. 
some part icies  re la ted  to  h igh  energy  phys ics)  find in N a m b u ' s  m e c h a n i c s  the  
p r o p e r  fo rmal i sm for the i r  descr ip t ion .  In th is  d i r ec t ion  Garc i a  Sucre  & K ~ n a y  
( t 9 7 4 )  have recen t ly  s h o w n  t h a t  the  q u a r k  s ta t is t ics  is c o n s i s t e n t  w i th  N a m b u ' s  
mechan ics .  

The  m a i n  par t  o f  th is  paper  is devo t ed  to  the  e - n u m b e r  N a m b u  mechan ics .  
The  m a i n  purpose  is to  l ook  for the  possible  r e l a t ionsh ip  a m o n g  N a m b u  and  
o t h e r  mechan i c s  in the  cases where  in tu i t ive ly  one  could  suspect  t h a t  pe rhaps  
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they are not independent. We shall first summarise the principles of this 
formalism (Nambu, 1973). Let 

X = ( X l , X 2  . . . . .  Xn)  , n = 2 , 3 , 4  . . . .  (1.1) 

be the phase space variables of Nambu's mechanics. He assumes the existence 
for a given physical system on n - 1 constants of motion, which he called, 
Hamiltonians HI, 112 . . . . .  Hn - 1, and he de fines a bracket 

{ fb f2  . . . . .  fn} = dr" O(fl, f2 . . . .  "~ ' )  (1.2) 
~(XI, X2 . . . . .  Xn) 

It follows that the fundamental bracket relation is 

{xl, x2 , . . . ,Xn}  = 1 (1.3) 

He postulates the equations of motion of a dynamical variable f (x)  to be 

f =  {J; H1,H2 . . . . .  Hn-1} (1.4) 

The Nambu formalismt can be confronted by the Hamiltonian one. We are 
expressing both formalisms in their bracket form. Let 

q = ( q l , q 2 , . . . , q N ) ,  P = ( P l , P 2 , . . . , P N ) ,  N =  1 ,2 ,3  . . . .  (1.5) 

the 2N phase space variables of the standard Hamiltonian formalism. As is well 
known, from the Poisson bracket 

{ f '  g } - = ~ i  3(3-~i 3pi3g 3pi3f G3g) (1.6) 

the fundamental bracket relations 

{qi, q j ) -  = {Pi, P]}- = 0 (1.7a) 

{qi, Py}- = 6i] (1.7b) 

follow. The Hamilton equations of  motion in Poisson bracket notation for a 
dynamical variable f(q,  p) are 

/ = {¢;, H}_ (1.8) 

The relations (1.5) to (1.8) (with the exception of (1.7a)) correspond respect- 
ively to (1.1) to (1.4). The relations (1.7a) correspond to formulas like {xl, 
x2, x3, x4 . . . . .  XN} = 0 which follow directly from equation (1.2). Moreover, 
for n = 2 it is transparent that the Nambu mechanics is totally equivalent 
through the identification x 1 = q 1, x2 = Pt to the Hamiltonian mechanics 
with N = 1, so that, in this sense, the Nambu mechanics can be considered as a 

-~ The Nalnbu formalism considered in the present paper is the corresponding one to 
his equation (4) (which is equivalent to our (1.4)) and not to the variants proposed by 
Nambu in his equation (6) or (7). All variants coincide for the triplet case (n = 3) which is 
the main case developed by Nambu in his article. 
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naturalgeneralisation of  Hamilton mechanics for a state vector space of arbi- 
trary dimensionality.t 

In this paper we shall discuss two of the questions which have resulted from 
Nambu's paper. (i) Is Nambu formalism for odd number n of phase space vari- 
ables equivalent to a Hamiltonian formalism with 2N phase space variables 
restricted by suitable phase space constraints? In other words, is Nambu mech- 
anics for odd n equivalent to the classical Dirac mechanics? (ii) Is the canonical 
group o f  the Nambu formalism for even n > 2 equivalent to the canonical 
group o f  a standard Hamiltonian systems of  2N = n variables? These questions 
will be treated respectively in Sections 2 and 3. The answers become negative 
in both cases. In the fourth and last section we shall consider the eventual 
possibility of the description of  quarks by means of Nambu's mechanics, but 
still in a very preliminary way. 

Remark. We stress that Nambu's equation of motion (1.4) is a first-order 
differential equation with regards to time. As a result, the state vector space of 
Nambu c-number theory is represented by his n-dimensional phase space of 
coordinates x. With the exception of constraints imposed on the x's Which we 
shall not concern ourselves with in this paper. We shall refer to this remark 
several times. 

2. On Odd D#nensional Phase Space 

In this section we consider the c-number form of Nambu's mechanics when 
applied to systems whose phase space is odd dimensional; and, discuss if it is 
different to Dirac's classical mechanics, which can only be applied (at least in 
its present form) to the standard case of even number 2N of coordinates in 
phase space. The question of the relation between these mechanics arises 
because Dirac mechanics is a Hamiltonian mechanics for systems whose 2N 
coordinates (1.5) are restricted by phase space constraints ~)a(q, P) 

ca ~ 0 (2 .1 )¢  

so that it could happen, at least in principle, that these restrictions could 
decrease to a lower odd number n', the dimension of the state vector space. If 
n '  = n, the dimension of the state vector spaces in Dirac's and Nambu's theories 
would coincide; then the next question would be to compare the structure of 
both dynamical theories; if not, both mechanics could not be equivalent. We 
anticipate that we shall show that the dimension n'  of the state vector space for 
Dirac theory cannot be odd, and this shows that Nambu's mechanics, is inequiv- 
alent to Dirac's mechanics, at least in the case in which the Nambu mechanics 
is more surprising, i.e. in the case o f  odd n. 

t Martin (1959) also considered a c-number  mechanics  where the  phase space coordi- 
nates  could be odd in number .  For a relation o f  this mechanics  to the  N a m b u  formalism, 
see Ruggeri (to be submit ted  to publication).  On the other  hand Nambu ' s  article influenced 
one of  us  (I. Cohen,  to be submi t ted  for publicat ion) to develop a generalisation of  Nambu  
mechanics.  In the  frame of  Cohen ' s  work the  relation between formalisms is also clarified. 

$ We use the Dixac (1964) notation for ~. 
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We must now exhibit that n '  must be even. But first we summarise the 
following from the Dirac theory (Dirac, 1950, 1958, 1964). He starts from 
the Lagrangian. The computation of the canonical momenta may imply a cer- 
tain number of relations among the q's and the p's. From self-consistency new 
constraints may arise. We call C the total number of  constraints. The set of all C 
constraints is further decomposed in the union of two disjoint sets: The set of 
the first- and the second-class constraints. We call respectively C(1) and C(2) the 
number of their elements. More generally, we have by definition that for any 
physical variable 

g(q, p )  = a f  first class variable iff {g, Ca}- = 0, a = 1, 2 , . . . ,  C (2.2) 

The first-class constraints are those first-class variables which are also con- 
straints. The second-class constraints are those which belong to the comple- 
mentary basic set. The number C(2) of second-class constraints must be even. 
There is no restriction on the number CO) of first-class constraints. 

We now begin our study of the comparison of the dimensions of the state 
vector spaces of a Nambu formalism o fn  independent phase space coordi- 
nates (1.1) compared to a Dirac formalism with 2N phase space coordinates 
(1.5) restricted by C = CO) + C(~) constraints (2.1). It is clear from Dirac's 
theory that each second-class constraint decreases by one the dimension of the 
state vector space in Dirac's formalism (dimension equal to 2N before intro- 
ducing the first constraint). On the other hand, let us assume for the moment 
that each first-class constraint decreases by two the dimension of that space. 
After all constraints have been taken into account, it would be clear that the 
dimension n '  of the state vector space in Dirac's theory is 

n ' =  2 N -  2C(t) - C(2) (2.3) 

and that n '  is even and therefore cannot be equal to n. The proof that the 
mechanics by Nambu and Dirac are different would be concluded. 

Note .  This result does not necessarily remain correct if the Nambu phase 
space is implemented with an additional number of auxiliary variables (Ruggeri, 
private communication). 

We now look for the proof of the assumption that each first-class con- 
straint decreases by two the dimension of Dirac's state vector space. 

With the assumption for the mathematical conditions being equation (2.1) 
an implicit definition o f p a  as a function of the remaining phase space 
coordinates, 

Pa ~ laa(q l  . . . . .  q a - l , q a , q a + l  . . . . .  qN, P l  . . . . .  P a - l , P a + l  . . . . .  PN) 
(2.4) 

this point may be proven. 
(If qa (instead ofpa)  can be implicitly defined, the proof would run in a 

similar way.) The proof is as follows: It is known (see equation (3.23) of 
Bergmann & Goldberg (1955), also Marx (1972) and pp. 46-47 of Cohen 
(1972)) that those dynamical variables which are true physical variables must 
have a null Poisson bracket with all first-class constraints. Let us call {gr ]r = 
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1 , 2 , . . . )  a basis in the state vector space (which is the space of those variables). 
From equations (2.2) and (2.4) we have, 

Og___L~ ~ Ogr O~a ~ g r  O#a (2.5) 
~qa ~qb ~Pb ~Pb 3qb 

b ~ a  

Let us consider in a 2N + 1 space the hypersurface Er formed by the points of 
coordinates (q 1 . . . . .  qN, P 1, • •., PN, gr (q, P)), which is a 2N dimensional 
manifold. Let us call 7r the 2N - 1 dimensional hypersurface obtained by the 
intersection of Nr with the hyperplane qa = 0. Equation (2.5), being a first- 
order differential equation in qa; implying, that the whole Nr is uniquely deter- 
minated by 7r, so that equation (2.5) lowers by one the dimension of the state 
vector space. Finally, equation (2.4) lowers again by one that dimension. [] 

Note. The proof is even more simple in the particular case/1 a = 0, because 
then Pa ~ 0 and agr/Oqa ~ 0 so that the values that gr takes in the state vector 
space (subspace of the phase space) only depend on the qi, Pi with i @ a. (See 
the related discussion of Dirac (1958) . ) t  

3. On Even Dimensional Phase Space 

Though mainly developed for phase space triplets, Nambu's mechanics is 
also possible for even dimensional phase spaces (Nambu, 1973) and then the 
question of the comparison of the Nambu mechanics with the standard 
Hamiltonian mechanics arises. We shall restrict the present study to the com- 
parison of the canonical groups of both formalisms. 

We are now considering phase space unconstrained systems for both Nambu 
and Hamiltonian mechanics; so that for each formalism we have that its state 
vector space is the space spanned by the respective phase space coordinates 
(cf. Remark at the end of the Introduction). Thus, a necessary condition for 
the equivalence of the mechanics to be compared is n = 2N. 

As the case n = 2N = 2 was considered in the Introduction, we shall hence- 
forth restrict ourselves to even n ~> 4. Up to a relabelling we can always put 

X1 = q l ,  X2 = P l , .  - ' , x 2 i - 1  = q i ,  x 2 i = P i ,  • • . , X n - 1  = q N ,  

Xn =PN, i = 1 , 2 , . . . , N = n / 2  (3.1) 

t We owe to Professor Rugged (private communication) the following interesting 
remark: Let us consider an ordinary Lagrangian problem: Time derivatives of order not 
greater than one, only holonomic constraints if any. When going to a phase space form- 
alism one can only obtain the standard Hamiltonian formalism or the Dirac formalism, 
depending on the absence or presence of phase space constraints. In a comparison with 
the Nambu formalism, the Hamiltonian one must be discarded because of the obvious 
difference in dimensions of the state vector spaces. From the above results, it is seen that 
the same happens with the Dirac formalism, therefore there exist no such Lagrangian 
formalism whose equation of motion be consistent with the equation of motion of the 
odd dimensional Nambu formalism. (See note after equation (2.3).) 
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Canonical transformations (q, p) -+ (q', p ')  can be introduced in two equiv- 
alent ways in Hamiltonian mechanics. In the first form they are the transform- 
ations that leave invariant the Hamiltonian formalism, this is the more usual 
way. In the second form (see e.g. Kilmister, 1964), they are the transform- 
ations that leave invariant the values of the fundamental Poisson brackets (1.7). 
When going to a different formalism we prefer the second definition for the 
following reasons: (i) There are formalisms where one knows nothing about an 
action principle. Thus, given a function like H'(q', p ' )  introduced to the trans- 
formed system in order to have transformed equations of motion of the same 
form as the original ones, one does not know i fH '  is a Hamiltonian. For 
example: in Harrdltonian mechanics the transformation q' = p, p ' = q  is known 
to be non-canonical; however, by defining H'(q',  p')  = - H ( q ,  p)  one knows 
that the transformed equations of motions are of the Hamiltonian form. How- 
ever, i fH  is related to the action according to its role as a Hamiltonian, the 
same does not happen of H'. Therefore, H '  is not a proper Hamiltonian and 
the transformation is not canonical. If, in this example, one could not resort 
to the action principle (as may be the case in other formalisms) one could not 
know if the transformation is canonical or not. Things are much more trans- 
parent when the second definition is used: not only in the quoted example 
(where the second definition immediately tells that the transformation is anti- 
canonical instead of canonical), but in more general formalisms where usually 
a bracket (at least in the ordinary sense) may be defined but the existence of 
an action principle is obscured. (ii) Frequently the final aim of a c-number 
formalism is tO quantise it. The quantum analogues of the canonical trans- 
formations are the unitary transformations and they preserve the quantum 
fundamental brackets. It is not easy to look for a quantum definition of 
canonicity like the first classical one. 

These remarks are consistent with Nambu's procedure: He defines his 
canonical transformations as those x -+ x'  that leave invariant the value of the 
fundamental Nambu bracket (1.3). We shall subscribe to Nambu's definition. 

Proposition. For even n = 2N/> 4 the Nambu canonical group, when trans- 
lated to Hamiltonian variables through (3.1), is different from the Hamilton 
canonical group. More explicitly, there are Nambu canonical transformations 
which are not Hamilton canonical transformations. 

Proof  Because of equation (1.2) the transposition of two Nambu coordi- 
nates only changes the sign of the Nambu bracket. Then the transformation 

l I ? I ! 

X 1 = X 2 ,  X 2 = X t ,  X 3 = X 4 ,  X 4 = X 3 ,  X i = X  i -V-i > 4 

(3.2) 

is Nambu canonical. However, in Hamiltonian variables equation (3.2) reads 

I I I l 

ql  = p t ,  p l  = q l ,  q2 =p2, p2 =q2,  

q; = qi, P; = Pi ~ i  > 4 (3.3) 

which is well known not to be Hamilton canonical. 
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4. Again a Short Remark  on Quarks 

Garcfa Sucre & K~ilnay (1974) found an indication toward the possibility 
that quarks could be properly described in terms of  the quantum Nambu 
mechanics. They proved that the quark statistics is consistent with a quanti- 
fication o f  Nambu mechanics. 

Here we present another tentative indication in the same direction: Let us 
consider a Nambu triplet x l ,  x2, x3. The state vector space of  this classical 
system is three-dimensional (cf. Remark at the end of  the Introduction).  But, 
this is just the dimension of  the quantum vector space spanned by  the basic 
triplet introduced in quark theory. Similarly, the three triplets considered in 
the quark-colour model  could be compared with three Nambu triplets: 
equation (6) of  Nambu (1973) jus t  describes an integer number of  Nambu 
triplets. These considerations may perhaps add another slio~t indication in 
support of  the idea that quarks could find in Nambu mechanics its suitable 
formalism. Of course, the above is nothing but  a rough guess, because of  the 
deep differences between classical and quantum state vectors. 
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